EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

A GUIDE TO ANALYTIC EXTRAPOLATIONS

Part TI: A program to be used in finding analytic correlations
of data, and for the detecting zeros and poles of the
scattering amplitude

I. Caprini*), M. Ciulli**), 5. Ciulli**), C. Pomponiu*),

I. Sabba-Stefianescu®**) and M. Sararu*)

TH-2268
23 March 1977

*) Institute for Atomic Physics, Bucharest, Rumania.
*%) Theory Division, CERN, Geneva, Switzerland.

*%%) Institut fur Theoretische Kernphysik der Universitdt Karlsruhe,
Karlsruhe, Germany.

M

(R TRICEERT e

e

INTRODUCTION

Er—relm—————

In particle physics there often arises the delicate problem of correlating*),
in an analytic way, approximative pieces of theoretical and/or experimental infor-
mation about the scattering amplitude. Indeed, this latter is supposedl) to be
an (unique) analytic fumctiom in the s-cut plane. Here s is the usual square of
the c.m. energy variable; more complicated analyticity domains, such as Martin's
axiomatic one for the partial wavesz), present no special difficulties, only the
form of the conformal mapping z(s) (see later) will be affected. This theoretical
or experimental informatiom about the scattering amplitude is understood to be given
in the form of some complex valued data functioms, a’(s), d"(s), ..., each one being
defined on some parts T'i, I'f, ..., of the cuts ', Since these approximate pieces of
knowledge**) by no means represent the exact boundary values of some analytic func-
tions, we can view them, merged in a unique data function d(s), defined all over
the "physical part" I = r{ + % + ... of the cuts. In the present form of the
program, the cuts [are (oo, 51], [52, +0), and the physical region I is supposed
te be connected and ranging from sy to so, but more general situatioms can easily

be rewritten by the reader himself.

The quality of the approximation will be introduced in the form of an error

function £+0(s):

P ey - A < £ 875 1.1
RIS ber .

where £(s) stands for the boundary value of the (unknown) analytic scattering ampli-

#k)

. . . * . .
tude and £+¢(s) is some prescribed error corridor [for technical reasons it
is advantageous to normalize 0(sg¢) =1 (sy = the end point of T'i); then, € will

represent the error at this end point of le.

Now, it is well known [see Part 1, henceforth quoted as (l)] that analytic
functions f£(s), satisfying Eq. (1.1), .could nevertheless differ arbitrarily from
cach other at every point not lying on I'i, unless some "stabilizing" condition,

for instance in the form

(1.2)

*) Continuity or smoothness arguments are, of coutrse, insufficient when holomorphic
functions are required; sum rules might be used, but holomorphy is equivalent
only with an infinite number of such sum rules!

*%) A typical example is represented by some given choice among the different pos-—
sible branches of a phase-shift analysis. Another example is provided by the
problem of sticking a high-energy (Regge) behaviour to low-energy data. In the
references, this latter case is usually treated (incompletely) with finite enexgy
sum rules.

#%%) In Eq. (1.1) the error corridor has & sharp form. Nevertheless, nothing prevents
the repeated use of the above program, for a sequence of values of the normaliz—
ing constant £, corresponding to different confidence levels. The results will
then refer to these prescribed levels.

- 2 -

is in force on the remainder I'; of the cuts T. Here ((s) might be known from
theoretical considerations (Martin-type bounds, Froissart asymptotics), but the

exact value of the constant M might not be. Again, we shall normalize p(s,) = 1.
In any case:

A) if M is also known, Eqs. (1.1) and (1.2) may be used with the programs described
in (I), to achieve optimal extrapolations to any interior point of the analyti-

city domain;

B) if M is not known, a condition of the type (1.2) may nevertheless be successfully
used in correlating the different pieces of information contained in the piece-
wise given, d{s). [If p{s) is not known either, Problem B can be stated for
every choice of p(s). Of course, better results are obtained if p(s} is closer

to the theoretical one.]

In other words, the compatibility of the condition (1.2) with the Eq. (1.1)
is important (see mext section) in deciding whether a given d(s) has chances of

representing the scattefing amplitude correctly, in the sense of (1.1).

MATHEMATICAL STATEMENT OF PROBLEM B.

Problem Bi: Given d(s) on I';, as well as the function o(s) and £ > 0, con-
sider the class F of analytic functions in the s-cut plane such that Eqs. (1.1)
and (1.2) should be fulfilled. Then, given p(s) on Tz, for each £(s) € 5 we can
define:
M{ = A.t.uyo l{(s:’\/’/(j(ﬁ) (2.1a)
S o Ty
i)

as well as

M, = ;:;Q 1\4{ (2.1b)

For ¢ small enough [such that £ = O should be incompatible with (1.1)], we
get M, ;>é 0.

The program looks for the number My, which is clearly a (non-linear) functional

of d{s), o(s), p(s), and €.

Applications

(Bla): If some upper value Mtrue for Mf (Eq. 2.1) of the true scattering
amplitude is known, we can disprove the analyticity of £(s) or the correctness of
the data d(s), if the computed value of M, is greater than the above Mtrue' This
is, in particular, useful i? the problems discussed in the footnote (*%) of page 1.

. 4
Indeed, the price to pay ’ in order to squeeze an analytic function on I'y, inside

-3 -

the error channel (1.1) around a "bad" data fumction d(s), is to have an exploding

function on 'z, i.e. a very large Mj.

(Blb): 1In particularq)

, if f(s) has a pole at s = sgp, let us define the
"Blaschke factor" B(s, s_) to be analytic in the same domain as f(s) and to have

a modulus equal to 1, both on I'; and T [in order not to change conditions (1.1)

and (1.2)] and a simple zero at s = sp. Then, the product f(s)+B(s, sp) is analytic
in the unit disk only if sp = sgp. Computing the Mg(sp) corresponding to d(s) x

x B(s, sp) for various Sp’ we shall get, if £ is small enough, a sharp minimum at

sP = sgp. The position of the minimum permits the evaluation of the most probable
position of the pole sgp, even if Mtrue ig not known (but if there are nevertheless
reasons to believe that it is not exceedingly high). The graph M, versus sp is of
interest also for greater €'s, when the minimum of Mg(sp) is flat (and hence the
above method fails), since this sort of pattern informs us that analytic funections
satisfying Eq. (1.1), and having a pole anywhere in the flat region above Mtrue’
can qetually be constructed (using the methods of Part 1): this would automatically

disprove any other pole-search method!

(Blc): The same trick can be used to find a zero sgz of the amplitude, com—

puting the My corresponding to d(s)/B(s, Sz).

Problem B2: Conversely, given d(s), o(s), p{s), and M, the program can compute
€00, the smallest € for which there still exists a holomorphic function satisfying
(1.1) and (1.2). If

E,= Au s) - Al /6 (2.2a)
then
= (2.2b)
&oo -fe.-l" E‘{-’

Applications (B2a), (B2b), (BZc)

The applications are the same as for Applications {Bla, b, c¢) and are denoted
correspondingly: (B2a) for the computation of the €9¢ for the input function
d{s) 3 (B2b) for the pole search [i.e. for the €g¢ corresponding to d{s)-B(s, sp)]
00 Eor d(s)/B(s,s }].
Cases (Bla, b, ¢) and (B2a, b, ¢) are commuted using different key positions
(KEY = 1 or 2 for Problems Bl or B2, KZ = 0, -1, +1 for the subpoints a, b, c}, or
different entry points [functions EMZERO (..vs -2+, KZ) and EPSZERO (..., ..., KZ)].

while (B2c) corresponds to the zeroces search [computation of ¢

Method of solution

As in Part 1, the problem can be brought inte a canonical form, mapping*) the
s-cut plare onto the interior of the unit 7{s) disk, such that T'; and T; map onte
the right, respectively left, half of the unit circle. Further, the weights o(0)

and p{(B8) can be absorbed into the analytic weight (outer)**) function defined by

o8

{C-N ’\'?.. Jlrx: 1/{64(0) , [C.w keq—e)_ - 1 f’,"g)(e) (2.3)
4

computed in (1), so that dw(exp(ie)) = d(exp(if)}) Cw(eXP(ie)), fw(C) = £(z) CW(C).

The inequalities (1.1) and (1.2) can be brought into the form

“Ty 404 Ty (8el) (2.4)

El

e -dlen] <t
Le] <M s Ty wheda, (D)0 g

Furthermore, by means of a second outer function (see, for instance, Ref. 5):

N : {ribl ; (2.6
L.O_ﬁ“, i\f‘) ™ "i}‘."‘*i“\‘,f\iiw'lc‘)‘:L-nb) f:“' t/'YL 1-:4:‘5)&%:)l<0\~:‘| s \C\‘Jtlir: &/M N ()
. : . o B

inequalities (2.4) and (2.5) can be combined into a single cne:

(2.7)

where

Py o4t gy = fisy Ciny Crg
T , B “E\ S ih) S uls) (2.8)

(_L ig{ﬁ) . | (i.\a_’“". C. Le‘e) C., I\QLL N 2 Q i}
> 1‘ 0 . e O o 1.
The point 1s that inequality (2.7) does not always have a solution, i.e. there
does not exist for every £ and a(exp (i6)) ,an analytic E(g) satisfying (2.7)!
Indeed, by its very definition (2.8), a(exp {i6)) is not an analytic function im
ik)

, d ¢ 7, so that there will exist a non-zero ﬁQistance? from d

the unit disk
to the set ﬁ'[see Ref. 6, KEq. (3.1)]:

*) The transformation Z(s) = (V1+s' - vY1-s")/(/1+s’ + V1-s’) where s’ =
= [(sl+sz—2so)s + sg(s1+5,) - 25152]/[(s~so)(sz—sl)] leading from the's—cut
plane to the T~unit disk,is performed by the function subroutine ZETAL (S,
S0, 81, 82) described in part 1. Thus, the bound functions o{s) and p(s)
become functions of the angle 83[@ = exp (i@)], and henceforth will be de-
noted by o(8) and 0(8).

*#%) i.e. analytic without zeros.

#%%) Indeed, if it were analytic,_then its property of being zero on a part of
the boundary T'; would imply d(Z) = 0 throughout the unit disk, and hence
also on I'j.

A B e e e e e o e 1 v

- 5=

e, [dstml = inplosp 18eh-del) 20 (2.9)
feF ocoum
This minimal distance depends on the given data function d(s) [e¢ is a non~
linear functional*%f d],as well as on the ratio €/M, which enters the definition of
Co’ see Eq. (2.6) . Indeed, as was shown in Ref. 6 (for a proof see Appendix E of
Ref. 5), the value of e¢ is the norm, (i.e. the modulus of the greatest eigenvalue)
of a certain matrix [see Eq. (3.8) of subsection 3.9],bui1t with the negative fre-

quency Fourier coefficients of the weighted data function a(exp (ie)).

It is obvious that,if for some given function d(exp (if)) and ratio M/e we

have

g 1d; &Ml 2 €, (2.10)

there will be no functions f € F satisfying (2.7). It can be shown (see Appendix A)
that for a fixed data function djexp (i6)), eo[d, a/M] is a strictly increasing
function of /M. Decreasing M, €, increases, reaching the value of £ exactly when

M falls down to My of Eq. (2.1).

Thus Mo(e) = inf (Mf) is the solution of the equation (MQEX)

g = g,0d;E1) (2.11)

for fixed €.

Conversely, for a given M, we can look for the best approximation of d on I}
by analytic functions from F, 1.e. Esee Eqs. (2.2)] the smallest £ (5 g£q9} com—

patible with the equation (EQQE‘}) :

y = g, 1d; %/™My (2.12)

As already stated, My or g£g9 gives a "measure" of the non-analyticity of the
data function and, as such, it is a very sensitive device for the detection of its

singularities (poles).

The subroutine pack EMZERO is designed to solve Egs. (2.11) and (2.12) for
the data function itself (Problems Bla and B2a)}, as well as for the data function
multiplied or divided (see Problems Blb, B2b, Blc, BZc) by fhe Blaschke factor
an(exp (i8)), providing the user with the value of My or €. In the r-variable,
the Blaschke factor B takes the simple form

Co ‘0 .
. Ly
0 1= gret

‘where g = g(sp).

*) More precisely, €, depends on the function dw(c), i.e. both on d(z) and
on Cw(;), but for the sake of simplicity we shall drop the index w.

- 6 -

DESCRIPTION OF THE SUEBROUTINE-PACK EMZERO

3.1 Quantities to be provided by the user

The Subroutine-pack EMZERO is designed to prepare and solve the problem of
finding the quantities My and €99 defined in the previous section [Eqs. (2.11)
and (2.12)]. To this end, we need the data function d{s) to be given in NPOINT
points, situated between S2 and S50, in the form of the array ""DATA". Further, we
need the error function o(s) at the same points (the array "ERROR"). The supple-
mentary information on the rest of the cuts s, which we might have in the form
of the bounding function p(s) [see Eq. (1.2)], can be accommodated by the program
defining a function subprogram, FBOUND(S).

Accordingly, the initial values (data) that must be provided by the user

are:
Sl = the end of the left-hand cut,.
52 = the beginning of the right-hand cut (where data are given).
S0 = the end point of the region where the data function is known. (This
is T1 = {s|s2 < s < s9}.) Actually, SO is returned by ANALYT (s0 =
= SEXP(NPOINT)),SO that the user could omit its determination.
NPQINT = the number of points where the data function is known.
SEXP(I) = real array, the experimental (real) values of the "energy", s [SZ <
S SEXP(I) < SO, where 1 < I < NPOINT].
DATA(I) = complex array, containing the complex values of the data function
corresponding to the above energy values [DATA(I) = d[sexp my}].
ERROR(I) = the real array of the error values, associated with the data
[ERROR(I) = e-c(sexp M)
NOFBD = logical variable. If NOFBD = .TRUE., then no function bound is assumed
on the rest of the cuts I'» {i.e. it is supposed that p(s) = 1]. 1f
NOFBD = .FALSE., then the program assumes that a non-constant function
bound exists. If so, the user must supply:
FBOUND(X} = a real-type function subprogram. Here the variable X is also real

(= < X < 8; or Sp < X < w}, with FBOUND(X) = Mp(X). It has to be

declared in an EXTERNAL statement, in the calling program.

All variables discussed above comstitute the input arguments for the first
subroutine of the pack, ANALYT. This subroutine, the description of which will
be given below, prepares the data to be processed by the rest of the program.
After this unique call of ANALYT, we can use directly the function subprogram
EMZERO (entry peint: EPSZERO) which computes My or £pg according to whether
EMZERO or EPSZERO was called. The initial constants (M and £) multiplying the
normalized error channel o(s) and the normalized function bound p£(s) [Eqs. (1.1

and (1.2)], may be changed at will, such that My {or g£¢¢)} can be computed for

-] -

different over—all error widths or TIs;-bounds. Further, the Problems a, b, and ¢
of Section 2 can be commuted, changing the value of the control parameter KZ. To

sum up, when calling EMZERO (or EPSZERO) the user has to provide:

EB

a real constant, representing either the value of EPS (= g£),if M, is wanted
(EMZERO is called), or BOUND (= M) when one seeks £ {when EPSZERO is
called).

SZERO = means the positions of the variable pole or zero (according to KZ), to be

introduced in the data function. In the present form of the program it
is real, but, if necessary, it may be declared complex (in the subprogram
EMZERQ) with no further changes.

KZ = an integer parameter controlling the introduction of a variable zeroc or a
variable pole in the data function in order to detect a pole (KZ = -1) or
a zero (KZ = 1) of the scattering amplitude [Problems {B1b), and (BZb)
or, respectively, (Blc) and (B2c)]. KZ = 0 leaves the data function un-
changed [Problems (B1la) and (BZa)].

In other words, if the user wishes to compute the value of My (defined, ac—
cording to KZ, as a functional on the data itself or om this latter modified with
a Blaschke factor), he should call EMZERC (EPS, SZERQ, KZ). For €gp, he should
use EPSZERO (BOUND, SZERO, KZ). '

Further, no COMMON-variables have to be determined by the user, since these
latter are meant only as a link between the various subroutines of the present

pack.

The EMZERO pack contains the following subprograms:

ANALYT - subroutine

EMZERQ - real function (with the ENTRY EPSZERQ)

ZETAl - complex function

THETAL - real function

5TH1 - real function

EXFUN - complex function (with two ENTRY points, CW and CW1)

MOEQOO - subroutine
COEF - subroutine
NORM

subroutine .
It is supposed that:
FBOUND - a real function [alias p(s)] is provided by the user

(necessarily if NOFBD = .FALSE.).

L

- 8 -

As has been already emphasized, in a normal run, only the subroutine ANALYT
and the real function EMZERO (or EPSZERC) have to be called by the principal

program,

3.2 SUBROUTINE ANALYT (SO, S1, S2, NPOINT,
SEXP, DATA, ERROR, FBOUND, NOFBD, EPS, BOUND)

The meaning of all arguments but the last two has been explained previously.
In fact, the latter are output arguments, and are defined by the subroutine itself
after o(s) and p(s) [i.e. ERROR(I) and FBOUND(X)] are normalized to 1 at s = sg.
Soi
EPS = ERROR (NPOINT) = €3 BOUND = FBOUND(SO) = M

(but BOUND = 1,if NOFBD = ,TRUE.). Both £ and M (alias EPS and BOUND) may be
redefined by the user before the functions EMZERO and EPSZERO are called.

The follewing two COMMON-Blocks provide a link between the various subroutines
in this pack. As already stated, none of these variables has to be assigned in

the main program.

Reading the description of the various variables contained in these COMMON's,

we get a first glimpse of the way the program pack is conceived:

COMMON/ANALYT/SS0, $S81, $82, KFLAG

580 = the value of S0,

§81 = the value of S1,

882 = the value of 82,

KFLAG = internal flag, mainly used by the extrapolation subroutines described in

Part 1.
COMMON/PWDR/LWRITE, GRAD, NPT, THETA(251),
CARL(251), ERR(251), N, RSWICH, ER

LWRITE = integer parameter, controlling the amount of printed output. It is
transmitted to almost every subroutine. If provides an internal knob
to be set by the user. We defer its description to every specific
subroutine.

GRAD = real parameter (a second internal knob) which controls the subdivision
of the integration intervals in some subroutines (in the present pack,
only in COEF).

NPT = identical to NPOINT. This argument together with THETA and CARL (see
below) is transmitted also to the subroutine COEF which uses the first
RPOINT angles (i.e. the THETA's between O and 7/2, see below) and the
weighted data function to compute negative frequency coefficients.

THETA(251) = real array of angles between 0 and 71/2 (if NOFBD = ,TRUE.) or between

0 and 7w (if NOFBD = .FALSE,), If NOFBD = ,TRUE., the first NPOINT

s

CARL{251)

ERR(251)

- KSWICH

]

values are the images of the experimental energies SEXP(J) by the
conformal mapping exp (i6) = r{s)}. If a non-constant function bound
o(s) is assumed to exist (i.e. if NOFBD = .FALSE.), a number of
edually spaced points are added by the subroutine ANALYT between m/2
and T (J = NPOINT+1, N) in which the values of p(ei) are computed and
(see below), transmitted to EXFUN,

complex array, which, at the very beginning, contains the elemeunts

of DATA, i.e. the values of the complex data function corresponding
to the first NPOINT angles THETA(J). Once EXFUN is called, according
to KSWICH:

- if KSWICH = 0, the complex values of the outer function CW(C)
defined by Eq. (2.3) and computed by EXFUN at Cj = axp (iej)

[63 = THETA(J)] are stored in CARL.

- if KSWICH # 0 (the case of the present program), the pre—existing
values of CARL(J) are ﬁot erased by EXFUN, but are simply multi-
plied by the above C_(exp (iej))'s. Hence, when one leaves ANALYT
(and so, also EXFUN), CARL holds the values of the "carlemanized
data" Cw(exp (i8))*d(exp (if)); during a call of EMZERO (or
EPSZERO) this array might be modified by a Blaschke factor (see
Section 3.3), but the initial values are always restored before
leaving these subprograms.

THETA and CARL are the main ingredients of the subroutine COEF, which
computes the negative Fourier coefficients necessary for the calcula-
tion of the functional €o of Eq. (2.9).

real array containing the values of the error functien O(Si) and, if
NOFBD = .FALSE. , also those of p(ej), corresponding to the THETA{(J)
discussed above. According to Eq. (2.3), these values coincide with
those of 1/10W(Cj)| on the unit circle and represents the input of the
subprogram function EXFUN. Since in the actual version KSWICH = 2,
EXFUN returns here the '"weighted errors" |Cw(exp (iﬁjﬂ|*ERR(J), this
permits ANALYT to check the efficiency of EXFUN; indeed, according to
the theory, the latter values have to be close to 1!

the total number of points on the Z-unit circle. If NOFBD = .TRUE.,
N = NPOINI, but if NOFBD = .FALSE., N = NPOQINT+ a number of points
between 7/2 and 7 (added in the subroutine ANALYT, as explained
above). -

integer control parameter acting on EXFUN, as explained abovej in
brief:

- if KSWICH = 0, the wvalues Cw(exp (iaj)) are stored in the array
CARL(J).

- 10 -

- if KSWICH # 0, the values Cw(exp (iej)) multiplied by the already
existing CARL(J); putting KSWICH = 2 causes also the sub-
routine EXFUN to return in the array ERR(J) the "weighted errors"
ICw(exp (iej))]*ERR(JL

ER = the error level in the accuracy test (see the module EXFUN in Part 1,
where ER = ERROR).

The above description already makes it clear how ANALYT acts: first, it
normalizes the error channel to 1 at the last experimental point 80. There, if
NOFBD = ,FALSE.,i.e. if a non-constant function bound FBOUND(S) is supposed to

exist, this latter is also normalized to 1 at SO.

The normalization constants EPS = ERROR(NPOINT)} and BOUND = FBOUND(SO} [cor—
responding to £ and M of Egs. (1.1) and (1.2)] are returned and printed out (if
NOFED = ,TRUE., BOUND = 1). They may then be changed by the user before calling
the function EMZERO and EPSZERO.

In other words, ANALYT computes the function G(8) [and p(e)] of Egs. (1.1)
and (1.2) in the points exp (iei) on the boundary of the unit Z-disk on which the
cut s-plane is mapped. By its very definition (see first footnote of Section 2)
z(s) brings the upper lip of the data cut T'; onto ¢ = exp (iB), 0 < 8 < 7w/2.
Hence, if no function bound is assumed (NOFBD = ,TRUE.), all the 6's of interest
lie between 0 and /2 and are the images of the data points SEXP(J) [THETA(J) =
= THETAL {SEXP(J), SO, S1, §2)]. 1If, on the contrary, p(8) # 1 (NOFBD = .FALSE.),
gome equally spaced THETA(J) lying between /2 and 7 are added to the previous
ones, and so their total number N increases from NPOINT to min (251, (BNPOINT-Z)).
Further, in order to compute the corresponding values of FBOUND(S), we have to
resort to the functiom STHl (TH, S0, S1, $S2), which is the inverse of the above
THETALl function.

The values of 0(8) and p(6) are then stored in the array ERR, while the
initial (complex) data are stored in CARL(J)} in view of Eq. (2.8), CARL{J) is
set to zero for all J's between NPOINT and N. Now, all the input data for EXFUN
are ready and the latter can be called on (using a dummy argument). EXFUN returns
via COMMON/PWDR/ (KSWICH was set equal to 2!) the weighted data Cw(exp (iGI)) %

X CARL(I) in the old array CARL, and the "weighted errors" ICW(exp (iqB)I-ERR(I)

in the array ERR. The fact that these latter have to be closest to 1, enables
ANALYT to check the efficiency of the weighting subprogram EXFUN: for LWRITE > 3,
both the input data and the conformal angles, as well as the deviation from 1 of

the "weighted errors', are printed.

Surming up, where ANALYT is left, the situation is the following: the con-

formal mapping angles and the corresponding data function weighted by Cw(exp (is))

- 11 -

are stored in the arrays THETA and CARL of COMMON/PWDR/; further, the Taylor
coefficients of]JI(CW(Z)) are stored in the internal memory of EXFUN, permitting
quick subsequent computations of Cw(z) or C;(z) for every z, when entering CW(Z)
or CW1(Z).

3.3 Function subprogram EMZERQ (EB, SZERQ, KZ)

EMZERQ -~ real type function,
EPSZERO - real type function.

Purpose: to direct the computations leading to the solution of either

Eq. {2.11) or Eq. (2.12) depending on the entry name called,

Arguments: Since they have to be produced by the user's program, they were

already explained in Section 3.1 To summarize,

EB = real and positive variable representing the imput (= or M).
SZERQ = real variable (position of the variable pole/zero).
XZ = integer (Key parameter).

Procedure: Once the function EMZERO or EPSZERO is called, the internal parameter
KEY is set equal to 1 or, respectively, to 2. EM should hold the value of ¢ (if
EMZERC is called) or that of M (if EPSZERO is called). As already stated, EMZERO
may be used either with the old or with new values of £ (= EPS) and M (= BOUND).
These latter quantities are important for MOEOO (see below), since the ratio /M
defines [see Eq. (2.6)] the second weight CO(C, e/M) which enters [see (2.8)]
the d(exp (i8))} function,whose coefficients are computed by COEF. Before proceeding
to the computation of €4, if KZ # 0, the C,(exp (iej))-d(exp (iej)) values contained
in COMMON/PWDR/, are modified as follows:

- by multiplication with a Blaschke factor BC (exp (i8)) Esee (2.13)] if a pole
0
is sought (if KZ = ~1); see Applications Blb and B2b of Section 2 3

- by division with the same factor if KZ = 1, and hence a zero 1s sought; see

Applications Ble and B2c .

The value of Ty = Q(Szero) is produced upon calling the complex function ZETAl

(SZERO, SO, S1, S2). Then My or eq¢ is computed by the subroutine MOEOO, according

to the value of the parameter KEY:

- if KEY 1, Eq. (2.11) is solved and EMZERO = My(Zy) is computed.

- if KEY

f

2, Eq. (2.12) is solved and EPSZERO = g44(Z;) is computed.

Before leaving EMZERQ, if KZ was different from zero, the zero/pole built at

.the beginning of the program is destroyed by dividing/multiplying CARL(J)

- 12 -

with BCDCEXP (iBj)). So the initial data are restored and COMMON/PWDR/ is ready
for further calls of EMZERO/EPSZER(bearing new values of BOUND and EPS. 1If
LWRITE 2 1, the value of My or £y¢ is printed together with (if KZ # 0) the posi-

tion of the variable pole/zero.

The following subprograms have been discussed in Part 1:

3.4 Complex function ZETAl (S, S0, S1, §2)

8
80, 81, S2

complex variable,

real constants.

3.5 Function THETAl (RS, S50, S1, S52)

RS = real variable,

50, 81, 52 = real comstants.

3.6 Complex function EXFUN(Z), with
ENTRY CW(Z) and CWL(Z)

Z = complex variable,

and they have the preparatory action already described in Section 3.2. They pro-
duce respectively the conformal mapping 4(s), then they link (both ways) the
boundary of the unit disk and the cuts I'1+I's, and they compute the Cw(c) welight

and its derivative Cé(C)- The two latter functions are quickly calculated for
every z, once the Taylor coefficients of 1n (CW(;)T are computed and stored during

the first call of EXFUN,

3.7 The subroutine MOEQQ (E00, MO, KEY, NFOUR)

3.7.1 The method

The MOEQO subroutine solves Eqs. (2.11) and (2.12):

e ld . e xl (3.1)

B S It

for Liyml (.2)
3

Here € (respectively M) is the error parameter (or the bound scale factor)
entering the Co—weight function. They are supposed to be known [e, for Eq..(2.1)
and M for Eq. (2.2)], while the solutions x and y are the sought-for values for
My and, respectively, £¢9. Further, d stands for the data with which MOEOQQO is
presented, contained in COMMON/PWDR/ and supposed to represent the boundary values
given on the unit cirele, the corresponding angles being contained in the same
' COMMON.

- 13 -

The uniqueness of the sclution of Egs. (3.1) and (3.2) rests upon the impbrtant
remark that while go[d, t] strictly increases with t = &/M, gol d, t)/t is (see
Appendix A) a strictly decreasing functiop of t. Hence, the points of intersection
of the graphs éo[d, s/x]/e and, respectively, €o[d5 y/M]/y with the line z = 1,

appear as in Fig. 3.1 and, respectively, Fig. 3.2,

Z b4
&%&
___15*__* =4
1 A - ——— =

X 3
F-usbi F"%‘B.l

vhich considerably simplifies the solving procedure.

The program works with either the quantity €,[d, €/x|/¢, or with the quantity
€o[d, y/M}/y, according to the value of the control parameter KEY set by the subpro-
gram EMZERO. The resulting equation is sclved by the chord method. To get a first
coarse approximation,a logarithmical interpolation is done for In (eo[d, E/x}/&)
as a function of ln x and for In (€g[ﬁ, y/MI/y) as a function of 1ln y. When a
value sufficiently c¢lose to 1 has been obtained, a second, finer, linear (ﬁot
logarithmic) interpolation is performed: more (NFOUR) Fourier coefficients are
taken inte account, and, on the other hand, the integration intervals (contrqlled
by the parameter GRAD) are finer. The computation stops when a preassigned errxor
value is reached.

MOEQQ (E0Q, MO, KEY, NFGUR)

EO0 = real variable; it represents an imput variable (= g} if KEY =1, or an
output variable (= €q9) if KEY = 2. '

MO = real variable; <nput (= M) if KEY = 2 or cutput (= My) if KEY = 1.

KEY = integer variable, used to solve either the equation € = g4[d, E/xﬂ for

given ¢, finding in this way Mp(e) (KEY = 1), or the equation y = eo(h, y/M)
for given M, finding thus £4,(M) (KEY = 2), '

NFOUR = the maximum number of Fourier coefficients taken into account in NORM.

The MOEOQ subprogram calls:

- the SUBROUTINE COEF that computes the Nth negative frequency Fourier coef- -
ficient of the weighted data functien a(exp (i6)) defined in Eq. (2.8}.

- 14 -

= the SUBROUTINE NORM that computes the quantity £¢[d, e/M] which enters
Egs. (3.1) and (3.2) using the Fourier coefficients produced by COEF.

Quantities in common biock:

COMMON/CARL/LWRITE, GRAD
- if LWRITE £ O nothing is printed;
= if LWRITE 2 1 the final result is printed;
- 1if LWRITE >

GRAD = real parameter transmitted to the SUBROUTINE COEF, controlling the fineness

2 also the intermediate approximations are displayed.

of the integration intervals.

3.8 Subroutine COEF (EML, NC, SUM)

Purpese: To compute the Fourier coefficients [of index (-NC)] of the product
of some given function d(exp (iﬁ)) with the outer weight function Co(exp (ig), E/M)
defined by

e
[Co(eea) =1 v - b e (3.3

\Co(eie,ﬁ/'!"l)\":&/mlf_m “Teho- amd L <DL,

Here g = THETA(NPT),(see below).

The function d(exp (i8)) is supposed to be of real type
: £ -~ {0
d () = d% (%)
and to vanish identically between « and 7 (i.e. on I'»); owing to these two last
conditions, the integration is performed only between 0 and o. Both the values

of d{exp (iBJ)} and the angles 6, (J = 1, NPT) are transmitted to COEF via
COMMON /PWDR/ .

Arguments:

EML = real variable transmitting the value of the ratio &/M which, along with the

end point of T; (= a), defines Coiexp (ig), E/M); nanmely

-1
EML = '2—_” In (E/M)

NC’ = integer parameter, equal to minus the index of the Fourier coefficient _Ne?

to be computed.
SUM = real output variable, equals Cope*

Common blocks:

COMMON/PWDR/LWRITE, GRAD, NPT, THETA(251), DATA(251)

LWRITE = dummy argument,

._15_

GRAD = real argument (in degrees); if the difference between two subsequent

angles exceeds 1.9 X GRAD degrees, this interval is automatically sub-

divided.
NPT = numbef of THETA(J) points where d{exp (iBJ)] is given.
THETA = real array containing the angles where d(axp (ieJ)) is given.
DATA = complex array holding the corresponding values of d(exp (iGJ)T.

has a rapidly varying phase (infinite rapidly varying at the end point of T';), the
conventional Fourier subroutines cannot be used. Indeed, around 6 = @ [see

Eq. (2.6), which is valid for a = m/2, .as is the case in the present paper] the
funetion Co(exp (i8), e/M) behaves like exp [wi-EML-ln (a—e)] multiplied by a slowly
varying part [S(B, EML)]:

. < E
C (% 54) = X S (XE) (3.4

where: X = @ - 8, E Z EML = (-1/2m) 1n (e/M).

Reckoning all that, the program approximates the remainder of the integrand

in intervals (Xk, Xk+1)’ around X = 0, by the parabolas:

NG y 2%
QLNCE)S{X)E)d(e Q') ‘:2‘ W

X, X REK,, (9
370

]

Combining (3.4) and (3.5), we get:

Ryea : 44 L P-LE
e o aNCo 2 XY (3l
| dX (e e d(e” e =y Wy (P)

X 3=0
Once the point Xk is reached, beyond which the phase of Co varies more slowly
0
(actually much slower) than that of exp (i*NC+8), the usual Filon method is used:
Co°d, rather than exp (i*NC+0)-S+d, is now approximated by (3.5)-type parabolas,

the rest being written as weighted sums of the integrals:
'\A‘-'NC'K . ; i w“
\ ¢ xFdx (Qro,t) . 3.7

As in the case of the IXJ°X_1E dX of Eq. (3.6), the integrals (3.7) can then be

written in a closed form.

The importance of subdividing the integration intervals into finer ones (see
the explanation of GRAD), is now clear; while nothing can be gained concerning the
‘precision of d(exp (i8)) [Vhose values are known only for the angles 6 = THETA(I),
(=1, NPTﬂ, since exp (i*NC+8), S(X, E) or Co(exp (10), €/M), entering the co-
efficients WJ [appearing in Eqs. (3.3) or (3.7)] are well known and calculable
‘functions, the over—all precision may be considerably enhanced. This is especially

the case when d(exp (i9)) itself is a slowly varying function.

16

3.9 Subroutine NORM (NN, C, ERROR, EPSIL)

Purpose: It computes the Hermitian norm £y of the Hankel matrix:

‘c_i L-i ﬂ.% - r £
c.,l fcvs - [] -!C “a O
A_a L] - c"’\'\ O ¢ (3.8)

o>
M
n
3
o

by an iteration procedure. The process is stopped when a pre—assigned error level

ERROR, is reached.

Arguments:
Input: NN = the dimension of the matrix C.
c = real array, holding the NN coefficients c_g used to build
the matrix €. '
ERROR = the pre-assigned error level,

Output: EPSIL

#

the (approximate) Hermitian norm, €4.

Procedure: The Hermitian norm €y of the matrix { is defined as the square
root of the largest eigenvalue Ay of the Hermitian matrix A = 6 G. The algorithm
consists of a successive squaring of the matrix A = §+C and taking the traces of
the resulting matrices. Indeed, since by construction A is an Hermitian matrix,

it can be diagonalized:
Ag=UAU™ 6.9

A, 0O
O Ay

Ad = : {3.10)

where

;kﬂN-i

Hence T'::;(Ad)?“n = (}\o)zn + (AI)Zn + ...+ (A)Zn . . (3.11)

NN-3
As the trace of a matrix is an invariant under unitary transformations, the

above values of the traces stay true for the original matrix too. Thus
TR A = Ao+ A + -..+ k““‘f\k (3.12)

o _ .Q'VL g™ \ﬁl
Tr (A)= ’\o + Xa o T e (3.13)

RN L

- 17 -
Further, it can be shown that the quantity

— " i/m.
LL) = LTVLAi) *

0

(3.14)

tends to the largest eigenvalue of A = éﬁ* (denoted here by Ag, Ao = €3) when

n > =,

Proof: Consider the relative error

— ()
v = Ao Ao . | (3.15)
mo Ao
. y e ={(n)
Using the definition of A " we get
" 4/2~L

Let us set

o
i
P
+
MR
7
_——/
)

Then /
12‘\\ ,
— _ _ S - 4
7= -1 =

4+ 9 4 (™ h 4 (57)

™4

and we obtain M
-1 1
pa (A/%o)

A % ST (5% (s

=

It is easy to see that S5 obeys the bounds
4 £ 5 < W

which gives the following bound for the relative error nn:

NN -1 (3.16)
o < Y o~ ——-—»WHW Q .

This ends the proof.

Assuming Ao strictly greater than the remaining eigenﬁalues (in fact the
subroutine works on this hypothesis), the bound (3.16) can be substantially im—

proved.

- 18 -

. Lk
We define a quantity)

Tn (A

= - —— ¢ (3.17)

TTm(A4]

After some straightforward algebraic manipulations, A can be cast into the

form: Mg M- M-y
9 2 2 o
AL2h it a0 g
BT T | TRET S
kA'o + - - - ..+,’\“N_,\)2-
where Q2 is a positive quantity.
Hence et \ et
- M- (LT R-1 —
2 2 Z A
[ﬁ; :> fl:ko (’kﬂ + . :F}ka¥|> ~ zfAﬁ (‘rLA\ _‘XO)
i zh“ﬂ 2’)\'-1 - : zh_i 2
("JLO + - Lot ANN'-’\)_ (T’l A)
L gmot g1
A 2 /\’D ko 2
> = -2 (S0
T A Tr A
The quantity 5™
Moo= Ao
C Tn AT

is related to the relative error nn*

y by the obvious relation

4

= (1 + r?*n-Jl (> 1) .

‘

- Ny-{ bis
Whe gy +Zi(k¢/,\o\
{=
We have thus got the inequality
R
A > 2w - 2w

The two solutioms of the equation A = 2u - 2u? are:

W W= -iL_t.%é
2
~ A= V12 A
L 9 = 5

*) A is supposed to go to zero as n grows. It is here that the hypothesis Aq >
(i =1.., NN-1) is essential. If Xy = A; then A == 1/2, and if Xy = Xy =
then A P 2/3, etec.

AL
Ao

19

To obey the inequality & > 2u - 2u®, u will have to satisfy either

0 <u<u, oru; <u<l. Now, the first condition is violated for n large
*)

enough ~.

It remains the second condition which means that n
4 +\1-2a 1
R < e, <
(‘H‘_QZ'H—'I)
or -

o will satisfy:

1 < L+

-

| 1
g< 2)l

1 +\V1a A

We get the bounds for n

1
. 9, L 2 (3.18)
0 < s (i) e

The corresponding bound for n

can be found from the equations
2"t Ve
(T A)
3_-1&»\] 1/’3_""‘1
/ko (4+ e‘J(m_t) = (Tﬂ_ !5\

n

ko (1 +0€“"-)

A 4 n

Together with the definitiom of A, we obtain the recurrence relation for n

= L+ 7,0 (1 ~—z>~}%%.

(3.19)
Thus the upper bound for n_ becomes
Von
2
0 < 7, <I L{A-A) 21 1 (3.20)
(1 +Vi-za)” '

*)

Indeed for n large, A * 0, so that u; + 0, while u goes to 1 (because
Nt o 0,as was shown above).

- 20 -

. . +
The program computes the traces of the consecutively squared matrices A = C C.

To avoid working with too large numbers (danger of overflow), renormalization is
performed each time, dividing the matrix by its trace,

Thus a sequence of matrices Ai (i
currence relation

1, 2, ...) is constructed, by the re-

]

A, = A -
A - A:\-ﬂi Ao

(3.2D)

— = n=1,2

- = ——y > " LL -

TrlAn) ~ Th(AS)
Also, we denote
. 2
SP('“) = n A\m-« , 22,
2 (3.22)
(Th &)
With these notations it can be easily checked that the quantity A given by
(3.17) can be expressed as
A - /\ . SPLM) (3.23)

The approximate largest eigenvalue given by (3.14) can be expressed by means
of the normalized quantities Sp(n).

To this end we shall apply successively the recurrence relation (3.21) starting
from the last step:

] 2 L -
Am ™ TORE, Anes = (T A TrAR2)? e =
1 Ai’“
B CT& Aimq)LT“ AM-?,Yl-- (T'\A 0)1‘“—1 0

If we take the trace of both sides (first and last ones) noticing that
Tr An =1 (for n # 0) by definition (3.21), we get '

T R ALY () = Ta =)
expression

Thus the approximation XE?) [see (3.14)] of the largest eigenvalue Ay has the

— 1/ Asn 2 _ ﬂ/'h
Kko) = TnA -5p® g ‘3F(§.)/2 C e P 2 (».2.4)

- 21 -

The relative error associated with this value is bounded from above by

‘1/%
max) T heny, T 7 (3.25)
(L+Vi-2a)

[with & given by (3.23)].

When n is large, the two terms of the difference (3.24) are very close to each
other. Therefore, to avoid loss of precision by round-off errors, we can use an

equivalent form of (3.25):

Denoting
s 1/
Y = L (1—A) YY=Y 72" (3.26)
=~ T % - b
L+ mza)
we have the equalities
4/2« . _
YWod =Y T = Y 1 (3.27)

— —— i
A AYY LYYy
The numerator is

Y-" 1 = 4&2 {3.28)
T4V Sz

The harmful compensation has thus been done explicitly and we are left with

a formula suitable for a computer:

(o) _ f-(- .C).Q- {3.29)
T e Vioan)t (AeYYe Yy)

The program works iteratively. When the bound for n, given by (3.29) gets under

the pre—assigned error ievel ERROR, the program terminates and returns the value
1(3) given by (3.24) in the variable EPSIL. If after 11 iterations (A = 1000) the
given ERROR level camnot be reached, a message is printed "pathological case" and
the program terminates. From the analysis made above, it 1s clear that such a

situation can occur if two or more eigenvalues of the largest modulus are equal.
‘§Eili, as was shown at the beginning of this description, the iﬁ?) given by (3.24)
offers an approximation to this common value. A relative error bound is given by

7N/2n [et. (3.16)], which is clearly not as good as (3.29).

- 22 -~

OUTLOOK

Part 1 deals with the analytic extrapolation of some data function [DATA(J),
given in the points Sexp(J) lying between S2 and SO] to the interior points of the
s—-plane, cut along (-=, Sl] and [SZ, ©); Part 2 deals with the computation of the
constants Mo and €99. As explained in Section 2, the latter are two important
functionals [see Egs. (1:1) and (1.2)] in measuring "the degree of analyticity" of
the data function we are presented with (see Problems Bla/B2a). They could be
used as a sensitive detecting device in correlating, in an analytic way, low- and
high-energy data, in detecting and finding the position of poles (Blb, B2b), and
zeros (Blc, B2c) of the scattering amplitude or of any other meromorphic fumction.,
The complex functions (entries): CYEX, PNEX, CAEX, EXMO, EXE00, and EXEX defined
in Section 3 of Part 1 compute, respectively, the Cauchy-weighted extrapolation
(dispersion integral), the Poisson-weighted dispersion integral, the centre of all
the analytic extrapolations, the extremal holomorphic function corresponding to
My, the extremal holomorphic function corresponding to €59, as well as the values
of some other extremal extrapolations defined there. The real functions EMZERO or
EPSZERO, defined in Part 2, return the values of the functionals My and £¢o com—
puted for the input data itself (if KZ is set to 0) or (if KZ = -1/+1) divided by
a2 Blaschke factor having a pole/zero at S = SZERO.

As repeatedly stated, in a normal run the user may call only the above func-
tions (entries) together with the subroutine ANALYT, The subroutine ANALYT (SO,
81, 52, NPOINT, SEXP, DATA, ERROR, FBOUND, NOFBND, EPS, BOUND) has a preparatory

mission and has to be called only once, at the beginning of the program (the input
variables were underlined; further, no common arguments are to be prepared by the
user). The normalization constants EPS and BOUND are returned by ANALYT, but they
may be redefined, at will, before using CYEX (X, EPS, BOUND) or EMZERO (EPS, SZERO,
KZ) and EPSZERO (BOUND, SZERO, KZ). However, if there is a need to save computer

time, the remark 3.1.la of Section 3, Part 1, should be observed.

- 23 -

APPENDIX A

The fact that EGEd, e/x] and (1/y)ag[d, y/M] are (strictly) decreasing functions
of x, respectively of y, is of great importance in solving Eqs. (3.1) and (3.2)
(see Figs. 3.1 and 3.2). Before proceeding to the corresponding proofs, we shall
remind the reader that c, denotes the least deviation of an analytic function %(C)

{in the unit disk) from the (non—analytic!) boundary values
T/.48 i L9
d (€7 %) = d (e),Co(a LEmM) (A.1)

where d(exp (ie)) is the "data function" (i.e. the measured amplitude on I'y, and
zero, by definition, on Tz, but this latter fact is immaterial for the proofs which

follow), while CO is the weight function defined in (2.6):

mr

|1 C, (Q‘e)| = J\a/{;\ o T, ! 4.2

Since by "deviation" we mean the largest value of the modulus of the difference
, . -~
between the two functions of interest (i.e. we use the L nomm,|f - d“ﬁm =

= sup |E(exp (19)) - E(exp (i9), e/M)]), €0[ds E/M] is defined by
0<6<2m

Eo[d;&/ﬂl = ? ML ‘ E ('8 — ;L (Qles £40) (, (4.3)

e 0L

the infinuum being taken over all functions £(z) amalytic in [z]| < 1. It is clear
that go associates a mumber to every data function d{exp (i8)) (and to every ratio
gfM), i.e. is a functional on the (Lm) functions defined on the boundary ¢ =

= exp (i8) of the unit disk.

In the following we shall be interested in evaluating e¢ for different values
of the ratio €/M; this amounts to working with new weighted data functions,
defined by

;L(e"lg; e = d (@9 C, (e, €540) (A.4)
) ¢l e T
1 C (A’\)l - J(gfl/ﬁi o |"‘2 (4.5)

instead of those of Eqs. (A.1) and (A.2). Then, in analogy with (A.3), we shall

‘write:

ond 5 al‘/ M'l

H

,m% /-\U~\° \HQ) —CL(Q /MO (A.6)

046421

- 24 -

Proof that eold, =/M] is strictly

decreasing with M

Let M < M', and let EM(C) be that holomorphic function which departs least
from the weighted data function (A.1). (The function f really existsa) and,
moreover (see for instance Ref. 5), the difference fM(EXp (i0)) - d(exp (i8), e/M)
has constant modulus all over 0 € 8 < ZW.] Then, since [see (A.2) and (A.S)]

i) . e _ i
| Golehend/Ce) | o= | vvxi/m-<.1:y:>mrr’"fz &.7)
we have
E’c]—_d‘ 5 ﬁ’/IM—L = Q;'[-o \%MLEIB)_‘;({{Q) E/M)l
Cole %)| l%\g (€°) —d (e'; &/H)]: (4.8)
C, e85 8/mM)

Cs é/H) M e 1
> DL e E/m
th% I'FH(e()(e‘g &/M) (2 /) b)
where the last equality involving a(exp (i), E/M'] follows from the use of defini-
tion (A.4).

Now, Egﬁexp (ie)]-co(exp (i9), E/M']/Co[exp (i8), /M) being also the boundary
values of an analytic function in the unit disk, the last expression of (A.8) is

surely greater than or at most equal to the tnfinum:

~

\,m..% QLL/) (_% (e‘@ &/)\ &oLd3 E'/ﬁ'j . (AL9)

£

More exactly, since the function fM' which realizes the infimum (A.9), is

such that f., - a[exp (i8), E/M'] has constant modulus along all I'}+I;, and since

MI
[owing to the similar property of fy combined with the strict inequality (A.?)]
L

the last expression of (A.8) has not this property,

Jlditpl 2 g Tdsem] e MM, (A.10)

which completes the proof of the monotony of £4 on M.

Proof that (1/e)eobd, e/M] is strictly
decreasing with ¢

Since £y depends on M or € only through the ratio /M, the previous proof is
equivalent to the statement that, for constant M's, eo[d, E/Mj monotonically

{nereases with £. Nevertheless, as will be proven here, this increase is szlow

enough, such that (lle)eo[d, E/M] is a decreasing quantity.

- 25 -

To this end we shall define a problem which is in some respects dual to the
initial one, in which the role of M and € are inverted. Define first the weight

Co by

: M/a')\ = - (A.11)

as well as the weighted data function
~ ' e o i
d'(e® M) = d(e®) C (7 M) .

Beside the reversal of the roles of M and €, the unique change made is the
inversion of I'y and I'» ([E;[equals 1 on Ty, rather than on I';), which amounts to
the change of variable 9 -+ 6 — 7, But the infimum problem is invariant under this

translation, so that
< Dei®y [t e
L A | £ (e —d (2 me
”‘.%* -‘mgrn ‘? (:)\

(A.12)

. n ~ S 1 : g-1)
= L«u& e l(e‘s) -d (et(- My
- ¥i OLGLiﬂ\ f) E)\
— T i . de-m)
= e [Ml , where d(¢?) = d e,
On the other hand, comparing Eq. (A.11) with Eq. (A.2) and remembering that

an outer function is, up to a constant phase, completely determined by the boundary

values of its modulus, we have

! M e o (A.13)
‘Co (e M/g) = E Cy LQ :&/\V\) > ‘
up to a constant phase.

Hence (up to a phase)
3l : : 8, ¢ .
d(e%e) = B d (2% C (7 M), 19

so that the left-hand side of (A.12) is nothing but the usual £, for the "data

function"

d'(eley = "E‘- d (eie) (A.15)

rather than d(exp (i6)). Hence

&0}:&'3&/”3 = E,0d ;e - (A.16)

- 26 -

Now, since g£o has the properties of a distance, we have

Eo[ld'a E/M_& = XEOLAE.E’/H_B 3

so that

& Ld'3 A Eo{ % dy S4] (4.17)

Equation (A.16) then reads:
% : EoLi; €M) = &id 3M/e] (4.18)

This completes the proof; indeed, since the actual form d of the data function
is immaterial for the proof of the monotony of Eu[a: t] with respect to t = M/g,
this means that the right-hand side of (A.18) decreases when ¢ increases. In other

words, (l/e)sotd, E/M] is a striétly decreasing function of €, at fixed M.

1)

2)

3)

4)

5)

6)

- 27 -

REFERENCES

Martin, Scattering theory, unitarity, analyticity, and crossing, Lecture
Notes in Physics {Springer Verlag, Berlin, Heidelberg, New York, 1969),
Vol. 3.

Martin, ibid.

Auberson and N.N. Khuri, Phys. Rev. D 6, 2953 (1972),

Mahoux, $.M. Roy and G. Wanders, Nuclear Phys. 70B, 237 (1974).
Auberson and L. Epele, Nuovo Cimento 25A, 453 (1975).

Ciulli and G. Nenciu, Nuovo Cimento 8, 735 (1972).

. Caprini, S. Ciulli, C. Pomponiu and I. Sabba Stefdnescu, Phys. Rev. D 3,

1658 (1972).

. Ciulli, C. Pomponiu and I. Sabba Stefdnescu, Phys. Reports 17C, 133 (1975).

. Ciulli and G. Nenciu, J. Math. Phys. 14, 1675 (1973).

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

